Cannabinoides sintéticos en Europa
Introduction
Análisis: Los cannabinoides sintéticos en Europa

Los agonistas de los receptores de cannabinoides sintéticos (denominados habitualmente «cannabinoides sintéticos») son un grupo de sustancias que simulan los efectos del (–)--Δ9-tetrahidrocannabinol (THC), que es la principal sustancia responsable de los efectos psicoactivos del cannabis más importantes. Al igual que el THC, los cannabinoides sintéticos se unen a los receptores de cannabinoides del organismo. Por este motivo, estas sustancias se han utilizado para crear una gran variedad de productos «euforizantes legales» que se venden como sustitutos legales del cannabis. Constituyen el mayor grupo de nuevas sustancias psicoactivas que son objeto de vigilancia por el Observatorio Europeo de las Drogas y las Toxicomanías (EMCDDA).
Desde mediados de la década de 2000 se están vendiendo productos «euforizantes legales» que contienen cannabinoides sintéticos en forma de «hierba para fumar». Estos productos no contienen cannabis pero, cuando se fuman, provocan efectos similares. Han sido objeto de innovadoras técnicas de marketing y es fácil obtenerlos abiertamente a través de internet y, en determinados países, en tiendas físicas («head shops» y «smart shops»).
El número de cannabinoides sintéticos, su diversidad química y su velocidad de aparición hacen que la detección, el control y la respuesta a este grupo de compuestos sean retos particularmente difíciles. Los distribuidores pretenden sencillamente simular los efectos del THC, lo que hace que, en esencia, cada cannabinoide sintético sea prescindible. Cuando un cannabinoide sintético es, o está a punto de ser, controlado legalmente, los fabricantes tienen una o varias sustancias de sustitución preparadas para la venta.
Se sabe muy poco acerca del funcionamiento de estas sustancias y de sus efectos tóxicos en el ser humano. No obstante, su consumo ha provocado numerosas intoxicaciones graves e incluso la muerte; a veces estos casos se han manifestado como brotes de intoxicaciones masivas. Es posible que, además de ser sumamente potentes, algunas de estas sustancias también posean una vida media larga, lo que llevaría aparejado un efecto psicoactivo prolongado. Asimismo, parece que al menos algunas de estas sustancias tienen efecto en otras funciones fisiológicas del organismo, aparte de sus efectos sobre los receptores de cannabinoides.
El presente análisis tiene por objeto actualizar los conocimientos disponibles sobre estas sustancias y sus efectos, así como las tendencias en materia de producción, disponibilidad y consumo.
La aparición de los cannabinoides sintéticos
A pesar de los rumores que empezaron a circular en internet a mediados de la década de 2000 acerca de «mezclas de hierbas para fumar» vendidas como «euforizantes legales» que podían inducir «fuertes» efectos como los del cannabis, no fue sino hasta 2008 cuando investigadores forenses de Alemania y Austria detectaron por primera vez la sustancia JWH-018, un cannabinoide sintético, en un producto que se vendía bajo la marca «Spice» (1). Posteriormente se detectaron diversos cannabinoides en mezclas para fumar o en los denominados inciensos/odorizadores ambientales. Como ejemplos típicos cabe citar las marcas Spice Gold, Spice Silver y Yucatan Fire, pero posteriormente aparecieron muchos otros productos. Muchos de los cannabinoides que se han detectado en estos productos fueron desarrollados inicialmente por los científicos que investigaban el efecto de los cannabinoides en el organismo y si podían actuar como medicamentos para tratar diferentes enfermedades y sus síntomas, por ejemplo, enfermedades neurodegenerativas, drogodependencias, trastornos dolorosos y cáncer. Hasta ahora, sin embargo, ha resultado difícil separar las propiedades medicinales deseadas de los efectos psicoactivos indeseados.
Los cannabinoides sintéticos representan el mayor grupo de sustancias actualmente objeto de seguimiento por el Sistema de Alerta Temprana de la UE. Se declaró uno en 2008, 9 en 2009, 11 en 2010, 23 en 2011, 30 en 2012, 29 en 2013, 30 en 2014, 25 en 2015 y 11 en 2016; en total, en diciembre de 2016 se habían notificado 169 cannabinoides sintéticos al EMCDDA (2).
Los cannabinoides juegan un papel importante en el mercado de los «euforizantes legales», que se encuentra en rápida evolución. El término «euforizantes legales» es un término genérico que denota las sustancias psicoactivas (nuevas) pendientes de regulación y que, por lo general, tienen por objeto mimetizar los efectos de las drogas sometidas a fiscalización que se venden libremente en el mercado. Es un ámbito caracterizado por la escasez de los datos disponibles sobre consumo, por lo mucho que desconocemos sobre sus riesgos y efectos perjudiciales, y en el que las drogas muy potentes generan inquietud. En el caso de las mezclas para fumar que contienen cannabinoides sintéticos, por ejemplo, puede existir una variabilidad considerable dentro de un mismo lote y entre los lotes diferentes de un producto, tanto en lo relativo a las sustancias que lo componen como a su cantidad.
Fabricación de los productos con cannabinoides sintéticos
La mayoría de los cannabinoides sintéticos que se utilizan en los productos «euforizantes legales» son fabricados por empresas químicas con sede en China. Se expiden a Europa en polvo a granel por correo urgente y a través de empresas de mensajería; las cantidades más grandes pueden expedirse por transporte aéreo o marítimo. Las autoridades europeas interceptan con frecuencia remesas de varios kilogramos. Aunque rara vez se determina la pureza de este polvo a granel, un estudio de Corea del Sur notificó purezas comprendidas entre el 75 % y el 90 % en muestras de polvo a granel (3). En 2015, más de 24 000 incautaciones de cannabinoides sintéticos (24 210) en Europa con un peso superior a 2,3 toneladas (2 334 kg), de las cuales más de 400 kg (444,245 kg) se compusieron de polvo a granel. Esto representa un aumento de casi 7 000 incautaciones y más de 1,6 toneladas (constituidas principalmente por material vegetal) con respecto a 2014.
Una vez en Europa, se combinan los productos de venta al por menor. Las hierbas damiana (Turnera diffusa) y lamiácea de los géneros Melissa, Mentha y Thymus (4) se utilizan comúnmente como base vegetal de las mezclas para fumar. Los cannabinoides sintéticos se mezclan o pulverizan sobre el material vegetal, por lo general a escala industrial y empleando disolventes líquidos como la acetona o el metanol para disolver los polvos; se utiliza maquinaria de tipo hormigoneras para mezclar los ingredientes. La mezcla resultante se seca y se envasa. Después se vende en internet a través de proveedores de «euforizantes legales» y en tiendas físicas.
Dada la elevada potencia de determinados cannabinoides sintéticos, la cantidad de polvo necesaria por cada paquete es del orden de unas pocas decenas de miligramos. Esto significa que cada kilogramo de polvo a granel puede producir miles de paquetes de «euforizantes legales». El descubrimiento de instalaciones para el procesamiento y envasado y de grandes cantidades de cannabinoides sintéticos en los Países Bajos y Bélgica es un probable indicio de la intervención de la delincuencia organizada en el proceso de distribución. Constan también pruebas de un importante comercio minorista en internet dentro de Europa, donde aduanas y fuerzas policiales se incautan regularmente de estos productos en pequeñas cantidades.
La vigilancia sistemática de las tiendas que venden por internet productos «euforizantes legales» arroja cierta luz sobre la variedad de mezclas fumables que se ofrecen a la venta, muchas de las cuales es probable que contengan cannabinoides sintéticos. Esta vigilancia, combinada con la compra a prueba de los productos que se ofrecen a la venta, también permite el seguimiento de cómo las sustancias que contienen un producto varían con el tiempo, a la vez que facilita la detección temprana de los nuevos cannabinoides que aparecen en el mercado.
Prevalencia
La información sobre el nivel de consumo de productos con cannabinoides sintéticos es limitada; no obstante, el conocimiento de la situación está mejorando a medida que un mayor número de países incluye preguntas sobre su consumo en encuestas generales de población. A partir de la información disponible parece deducirse que la prevalencia del consumo en la población general es escasa en Europa. Se han impulsado diversas encuestas orientadas a examinar la prevalencia del consumo de productos de tipo «Spice», pero su cobertura y representatividad siguen siendo limitadas.
Existen diferencias notables en la prevalencia del consumo de productos cannabinoides sintéticos entre los mercados de drogas europeo y estadounidense. Los datos más recientes de prevalencia en EE. UU. proceden de la encuesta «Monitoring the Future» de 2014, dirigida a los estudiantes estadounidenses, e indican un declive: la prevalencia durante el último año entre los jóvenes de 17 y 18 años fue del 5,8 % en 2014, cuando había sido del 7,9 % en 2013 y del 11,3 % en 2012 (29). En 2011, según la misma encuesta, la «marihuana sintética» fue la segunda más consumida después del cannabis, con una prevalencia durante el último año del 11,4 %.
Varias encuestas realizadas en países de europeos informan también sobre el consumo de cannabinoides sintéticos, aunque no son comparables debido a que utilizan diferentes métodos, marcos de muestreo y terminología. En general, estos estudios indican niveles de prevalencia muy bajos. En el Reino Unido (Inglaterra y Gales) se estudió el consumo de «Spice» en dos encuestas nacionales consecutivas y se notificaron niveles de prevalencia a lo largo de la vida de los adultos (de 16 a 64 años) del 0,2 % en 2010/2011 y del 0,1 % en 2011/2012 (6,7). Según la última Encuesta británica sobre la delincuencia para Inglaterra y Gales, que recogía datos de 2014/2015, el 0,9 % de los adultos (de 16 a 59 años) habían consumido nuevas sustancias psicoactivas en el año anterior, de los cuales el 61 % había usado una mezcla de hierbas para fumar (8). La pregunta no se repitió en años posteriores debido a la baja tasa de prevalencia.
En España, una encuesta nacional de 2014 sobre el consumo de drogas dirigida a estudiantes de 14 a 18 años y basada en una muestra de 37 486 encuestados identificó bajos niveles de consumo de productos de «Spice», con unos porcentajes de prevalencia del consumo una vez en la vida cifrados en el 0,8 % en 2014, desde el 1,4 % de 2012 y el 1,1 % de 2010 (9,32). En una encuesta poblacional general realizada en 2013 también en España, el 0,5 % de los 23 136 encuestados (de edades comprendidas entre los 15 y los 64 años) declaró haber consumido «Spice» al menos una vez en la vida (10).
En una encuesta dirigida a adultos (de 18 a 64 años) y realizada en Francia en 2014, un 1,7 % de los encuestados declaró haber consumido «cannabinoides sintéticos» al menos una vez en la vida. Los que habían consumido por primera vez estos nuevos productos sintéticos eran en su mayoría varones (2,3 % frente al 1,2 % de mujeres) y se encuadraban en la generación más joven (menores de 35 años): el 4,0 % del grupo de 18 a 34 años había probado un cannabinoide sintético frente al 0,6 % del grupo de 35 a 64 años (11). Otra encuesta realizada en Francia entre jóvenes de 17 años, notificó que el 1,7 % había consumido anteriormente un cannabinoide sintético (12).
La encuesta de 2015 de la Federación Central de Información sobre Alcohol y otras Drogas de Suecia (CAN) preguntó a los alumnos sobre su consumo de sustancias psicoactivas nuevas. Se observó una disminución con respecto a años anteriores del consumo en algún momento de la vida declarado por alumnos de los cursos 9º y 11º, que se cifró en un 1,6 % y un 3,2 % respectivamente. Los cannabinoides sintéticos fueron la sustancia psicoactiva nueva más consumida por los alumnos de 9º curso y del segundo año de enseñanza secundaria superior (37).
La ciudad alemana de Fráncfort ha investigado el consumo de mezclas fumables y «Spice» entre los estudiantes de 15 a 18 años. Se declararon prevalencias de consumo una vez en la vida del 7 % en 2009, del 9 % en 2010, del 7 % en 2011 y en 2012 (13,14,15). En 2013, el consumo una vez en la vida de mezclas fumables descendió al 5 %, aunque volvió a aumentar al 6 % en 2014 y se mantuvo en el 6 % en 2015; tales valores, sin embargo siguen estando por debajo de los correspondientes a 2009-2012 (16,17, 33). Los estudiantes que declararon consumir «Spice» eran, en su mayoría, consumidores experimentados de cannabis.
Finalmente, varios estudios realizados sobre grupos determinados (clientes de locales nocturnos, internautas, etc.) con muestreos no probabilísticos han detectado, en general, niveles de consumo de cannabinoides sintéticos más elevados que entre la población en general. Así, la Encuesta global sobre el consumo de drogas (Global Drug Survey) de 2012, registró tasas de prevalencia en el último año del 3,3 % entre todos los encuestados del Reino Unido (no representativos de la población general) y del 5,0 % entre los usuarios habituales de locales nocturnos del mismo país (18).
En el Reino Unido, el consumo de cannabinoides sintéticos en la población reclusa es especialmente preocupante. Una encuesta realizada en 2016 en centros penitenciarios del Reino Unido reveló que el 33 % de los 625 reclusos encuestados había consumido «Spice» a lo largo del mes anterior (frente al 14 % de consumo de cannabis durante el mismo periodo). La variación de los niveles de prevalencia del consumo de «Spice» a lo largo del mes anterior de un centro penitenciario a otro se situó entre el 15 % y el 71 %. Se preguntó a las personas que habían consumido «Spice» a lo largo del mes anterior acerca de la frecuencia semanal de consumo; los resultados indicaron que el 31 % había consumido «Spice» una o dos veces a la semana, el 8 % una vez a la semana, el 15 % 2-3 veces a la semana y el 46 % casi a diario (30). En un estudio anterior realizado en 2015 por la Inspección de Prisiones del Reino Unido, se entrevistó a 1 376 reclusos de ocho centros penitenciarios y un 10 % de ellos declaró estar consumiendo «Spice» en su centro (31).
Efectos perjudiciales de los cannabinoides sintéticos
Los efectos secundarios sobre la salud de los cannabinoides sintéticos están asociados tanto a las propiedades intrínsecas de las sustancias, o los efectos del organismo sobre las sustancias, como al modo de producción. Se ha producido un gran número de intoxicaciones no mortales, y un número menor de muertes asociadas a su consumo (19,20). Dado que algunos de estos compuestos son muy potentes, su potencial de inducir efectos tóxicos parece elevado. Estos riesgos pueden ser aún mayores debido al proceso de fabricación, que puede acarrear una distribución desigual de las sustancias dentro de la mezcla de hierbas. Como consecuencia, algunos productos pueden tener partes en las que el cannabinoide está muy concentrado, de modo que las dosis son mayores de lo previsto y existe un mayor riesgo de efectos secundarios graves (21,22). También es posible que algunos de los efectos secundarios se produzcan por mecanismos distintos de la interacción con los receptores de cannabinoides, por ejemplo, por la interferencia con otras funciones fisiológicas del organismo (23).
Una revisión sistemática reciente de los efectos secundarios relacionados con los productos cannabinoides sintéticos reveló que la agitación, las náuseas y una frecuencia cardiaca anormalmente rápida eran síntomas de intoxicación notificados con frecuencia (17); en cambio, los efectos secundarios graves —como ictus, convulsiones, infarto, destrucción del tejido muscular, lesión renal, psicosis y vómitos intensos o prolongados— y la muerte eran menos habituales (17). Se han notificado asimismo síntomas indicativos de dependencia y abstinencia (22). En general, es complicado calcular la frecuencia de estos efectos secundarios debido, entre otros motivos, a que se desconoce el número total de personas expuestas a las drogas (17).
Una de las características más llamativas de los productos cannabinoides sintéticos es su capacidad de causar brotes de intoxicaciones masivas. En ocasiones se trata de cientos de personas afectadas durante un breve periodo, y ha supuesto un problema importante en los últimos años en Estados Unidos y Rusia. En 2014, el cannabinoide MDMB-FUBINACA se relacionó con más de 600 personas intoxicadas, de las que 15 murieron, en Rusia durante un periodo de dos semanas (23). A principios de 2016, se detectó esta sustancia en el mercado europeo, lo que activó una alerta de salud pública del EMCDDA a su red de alerta temprana. En 2015 se registró otro gran brote en Estados Unidos, que aparentemente estuvo relacionado en parte con una sustancia denominada ADB-FUBINACA (24,25). Aunque estos tipos de brotes parecen ser raros en Europa, en 2015 se notificaron más de 200 urgencias hospitalarias en menos de una semana después de que las personas afectadas fumaran un producto llamado «Mocarz» en Polonia.
En julio de 2016, el MDMB-CHMICA fue el primer receptor agonista cannabinoide sintético sometido a una evaluación de riesgos por el EMCDDA (35) y recientemente ha sido objeto de medidas de control y de sanciones penales en toda Europa (36). El MDMB-CHMICA está clasificado como un potente agonista completo del receptor CB1 y también se ha demostrado que puede ser agonista del receptor CB2. En el momento de la evaluación de riesgos, el EMCDDA había recibido notificaciones relativas a 25 intoxicaciones agudas y 28 muertes asociadas al MDMB-CHMICA. En 12 de los casos, el MDMB-CHMICA se notificó como causa de la muerte o como factor que contribuyó a ella. En tres casos fue la única sustancia detectada. El MDMB-CHMICA está disponible en el mercado de drogas de la Unión Europea desde al menos agosto de 2014 y, en el momento de la evaluación de riesgos, se había detectado su presencia en 23 Estados miembros, en Turquía y en Noruega. La información comunicada al EMCDDA y a Europol indicó que se habían aprehendido más de 120 kg de MDMB-CHMICA: unos 67 kg en forma de mezcla de hierbas y unos 46 kg en forma de polvo. La mayor incautación a granel comunicada al EMCDDA, 40 kg de polvo de gran pureza que contenía MDMB-CHMICA, procedía de China (34).
La vigilancia de efectos secundarios graves por el EMCDDA y los conocimientos actuales de los efectos farmacológicos y toxicológicos de algunos cannabinoides sintéticos muestran que estos compuestos pueden ser muy perjudiciales para la salud humana. No obstante, por el momento no se conocen bien los mecanismos implicados.
Desarrollos recientes
Desde que comenzó el fenómeno de los cannabinoides sintéticos, estas sustancias se han detectado principalmente en los productos que se venden como «mezclas de hierbas para fumar». Más recientemente, sin embargo, en varios países se han detectado estas sustancias en productos parecidos a la resina de cannabis, tanto en productos «euforizantes legales» de marca como el «Afghan Incense» o simplemente camuflados en forma de resina de cannabis en el mercado ilegal. Esta evolución se produce probablemente como respuesta a la popularidad de la resina del cannabis en muchos países. Se han detectado también cannabinoides sintéticos en mezclas que contenían otras nuevas sustancias psicoactivas como estimulantes, alucinógenos e hipnótico-sedantes, lo cual podría ser deliberado o accidental. En un número limitado de casos se ha detectado la presencia de cannabinoides sintéticos en lo que parecían ser pastillas o cápsulas de éxtasis. En Hungría y en Estados Unidos, esto se ha traducido en brotes de intoxicaciones agudas (26). Otro fenómeno reciente ha sido el descubrimiento de cannabinoides sintéticos en los cartuchos rellenos de líquido para uso en cigarrillos electrónicos; es muy probable que esto responda a la reciente popularidad de la práctica de inhalación de vapores («vapear») entre los jóvenes.
El EMCDDA viene supervisando atentamente la evolución de los cannabinoides sintéticos desde su identificación en el mercado europeo en 2008. Es llamativo el modo en que esta familia química ha ido evolucionando y adaptándose durante este tiempo. Obviamente, las innovadoras pautas de sustitución química que han caracterizado a este fenómeno significan que será fundamental una estrecha supervisión constante de las nuevas tendencias en este campo, lo que incluye los efectos perjudiciales de los cannabinoides sintéticos.
Footnotes
- (1) EMCDDA (2009), Understanding the ‘Spice’ phenomenon, Resúmenes temáticos del EMCDDA, Oficina de Publicaciones de la Unión Europea, Luxemburgo.
- (2) A efectos de supervisión dentro del marco del Sistema de Alerta Temprana de la UE, en este documento el término «cannabinoides sintéticos» hace referencia a lo siguiente: el elevado número de agonistas de los receptores de cannabinoides sintéticos (como JWH-018, que es un agonista de los receptores CB1 y CB2) que se han detectado en el mercado europeo de las drogas; un número mucho menor de moduladores alostéricos (como Org 27569) que modifican la estructura de los receptores de cannabinoides, alterando así la actividad cuando un ligando se une a los receptores; y sustancias que actúan como inhibidores de la amida hidrolasa de ácidos grasos (FAAH), que es la enzima responsable de la degradación del endocannabinoide anandamida (como URB597). Este «Perspective on Drugs» aborda únicamente los agonistas de los receptores de cannabinoides sintéticos.
- (3) Choi, H., Heo, S., Choe, S. y cols. (2013), «Simultaneous analysis of synthetic cannabinoids in the materials seized during drug trafficking using GC-MS», Analytical and Bioanalytical Chemistry, 405(12), pp. 3937-3944.
- (4) Ogata, J., Uchiyama, N., Kikura-Hanajiri, R. y Goda, Y. (2013), «DNA sequence analyses of blended herbal products including synthetic cannabinoids as designer drugs», Forensic Science International, 227(1-3), pp. 33–41.
- (5) National Institute on Drug Abuse (2014), «Monitoring the Future Survey 2014, overview of findings», NIDA, Bethesda, MD.
- (6) Smith, K. y Flatley, J. (eds) (2011), Drug misuse declared: Findings from the 2010/11 British Crime Survey, England and Wales, Home Office, Londres.
- (7) Office for National Statistics (2012), Drug misuse declared: Findings from the 2011/12 Crime Survey for England and Wales, Home Office, Londres.
- (8) Home Office (2015), «Tables for drug misuse: Findings from the 2014 to 2015 CSEW», Home Office, Londres.
- (9) Observatorio Español de las Drogas y las Adicciones (2012), Encuesta sobre uso de drogas en enseñanzas secundarias (ESTUDES) 2012, España.
- (10) Observatorio Español de las Drogas y las Adicciones (2013), Encuesta sobre alcohol y drogas en España (EDADES)
- (11) Beck, F., Richard, J.-B., Guignard, R., Le Nezet, O. y Spilka, S. (2015), ‘Levels of drugs use in France in 2014’, Tendances 99.
- (12) Spilka, S., Le Nézet, O., Ngantcha, M. and Beck, F. (2015), «Drug use in 17-year-olds: Analysis of the ESCAPAD survey», Tendances 100.
- (13) Werse, B., Müller, O., Schell, C. y Morgenstern, C. (2011), Jahresbericht MoSyD: Drogentrends in Frankfurt am Main 2010, Centre for Drug Research, Fráncfort del Meno.
- (14) Werse, B., Bernard, C., Schell-Mack, C. y Morgenstern, C. (2012), MoSyD Jahresbericht 2011: Drogentrends in Frankfurt am Main, Centre for Drug Research, Fráncfort del Meno.
- (15) Bernard, C., Werse, B. y Schell-Mack, C. (2013), MoSyD Jahresbericht 2012: Drogentrends in Frankfurt am Main, Centre for Drug Research, Fráncfort del Meno.
- (16) Werse, B., Morgenstern, C. y Sarvari, L. (2014), MoSyD Jahresbericht 2013: Drogentrends in Frankfurt am Main, Centre for Drug Research, Fráncfort del Meno.
- (17) Werse, B., Kamphausen, G., Egger, D., Sarvari, L. y Müller, D. (2015), MoSyD Jahresbericht 2014: Drogentrends in Frankfurt am Main, Centre for Drug Research, Fráncfort del Meno.
- (18) Guardian/Mixmag Survey (2012), consultada el 13 de marzo de 2013.
- (19) Tait, R. J., Caldicott, D., Mountain, D., Hill, S. L., Lenton, S. (2016), «A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment», Clinical Toxicology (Philadelphia) 54(1), pp. 1-13.
- (20) American Association of Poison Control Centers (n.d.), «Synthetic cannabinoids», AAPCC, Alexandria (Virginia, EE. UU.).
- (21) Lindigkeit, R. 1., Boehme, A., Eiserloh, I. y cols. (2009), «Spice: A never ending story?», Forensic Science International, 191(1-3), pp. 58-63.
- (22) Uchiyama, N., Kikura-Hanajiri, R., Ogata, J. y Goda, Y. (2010), «Chemical analysis of synthetic cannabinoids as designer drugs in herbal products», Forensic Science International, 198(1-3), pp. 31-38.
- (23) Fisar, Z. (2010), «Inhibition of monoamine oxidase activity by cannabinoids», Naunyn Schmiedeberg’s Archives of Pharmacology, 381(6), pp. 563-572.
- (24) Macfarlane, V. y Christie, G. (2015), «Synthetic cannabinoid withdrawal: A new demand on detoxification services», Drug and Alcohol Review 34(2), pp. 147-153.
- (25) Shevyrin, V., Melkozerov, V., Nevero, A. y cols. (2016), «Identification and analytical characteristics of synthetic cannabinoids with an indazole-3-carboxamide structure bearing a N-1-methoxycarbonylalkyl group», Analytical and Bioanalytical Chemistry 407(21), pp. 6301-6315.
- (26) Kasper, A. M., Ridpath, A. D., Arnold, J. K. y cols. (2015), «Severe illness associated with reported use of synthetic cannabinoids: Mississippi, April 2015», Morbidity and Mortality Weekly Report 64(39), pp. 1121-1122.
- (27) Drug Enforcement Administration (2015), «Proposed rule schedules of controlled substances: Temporary placement of the synthetic cannabinoid MAB-CHMINACA into Schedule I», Federal Register 80(179), pp. 55565–55568.
- (28) Brenneman, R., Papsun, D. M., Logan, B. K. y Neavyn, M. J. (2016), «Death-like slumber: Toxic outbreak of AB-FUBINACA», Journal of Medical Toxicology, 12(1), p. 39.
- (29) Johnston, L. D., O'Malley, P. M., Miech, R. A., Bachman, J. G. y Schulenberg, J. E. (2016): «Monitoring the Future national survey results on drug use, 1975-2015: Overview, key findings on adolescent drug use. Ann Arbor: Institute for Social Research, The University of Michigan, pp. 98. Disponible en: http://www.monitoringthefuture.org/pubs/monographs/mtf-overview2015.pdf.
- (30) User Voice (2016), «Spice: the bird killer. What prisoners think about the use of spice and other legal highs in prison». Disponible en: http://www.uservoice.org/news/user-voice-news-blog/2016/05/nhs-report-by-user-voice-hears-directly-from-inmates-the-true-horrors-of-nps-use-in-prisons/.
- (31) HM Inspectorate of Prisons (2015). «Changing patterns of substance misuse in adult prisons and service responses. A thematic review by HM Inspectorate of Prisons», diciembre de 2015. Disponible en: https://www.justiceinspectorates.gov.uk/hmiprisons/wp-content/uploads/sites/4/2015/12/Substance-misuse-web-2015.pdf.
- (32) Observatorio Español de las Drogas y las Adicciones (2016) ESTUDES 2014/15. «Encuesta sobre uso de drogas en enseñanzas secundarias en España (ESTUDES)». Disponible en: http://www.pnsd.msssi.gob.es/profesionales/sistemasInformacion/sistemaInformacion/pdf/2016_Informe_ESTUDES.pdf.
- (33) Werse, B., Egger, D., Sarvari, L., Kamphausen, G. y Müller, D. (2016), MoSyD Jahresbericht 2015: «Drogentrends in Frankfurt am Main», Centre for Drug Research, Fráncfort del Meno.
- (34) EMCDDA-Europol Joint Report on a new psychoactive substance: methyl 2-[[1-(ciclohexilmetil)indol-3-carbonil]amino]-3,3-dimetilbutanoato (MDMB-CHMICA). EMCDDA–Europol , Lisboa, julio de 2016. Disponible en: http://emcdda.europa.eu/publications/joint-reports/mdmb-chmica.
- (35) EMCDDA (2017). Report on the risk assessment of methyl 2-[[1-(cyclohexylmethyl)-1H-indole-3-carbonyl]amino]-3,3-dimethylbutanoate in the framework of the Council Decision on new psychoactive substances. Disponible en: [insertar enlace cuando esté disponible].
- (36) Decisión de Ejecución (UE) 2017/369 del Consejo, de 27 de febrero de 2017, por la que se somete a medidas de control a 2-[[1-(ciclohexilmetil)-1H-indol-3-carbonil]amino]-3,3-dimetilbutanoato de metilo (MDMB-CHMICA). Diario Oficial de la Unión Europea L 56/210 de 3.3.2017, disponible en: http://eur-lex.europa.eu/legal-content/ES/TXT/HTML/?uri=CELEX:32017D0369&qid=1489767473947&from=ES.
- (37) Agencia de Salud Pública de Suecia (2016), «Drugs workbook», Estocolmo, inédito.
Interactivo: Desmitificación de la química
Carga de la función interactiva... espere, por favor
Con el fin de hacer más comprensible la química de los cannabinoides sintéticos, presentamos aquí un modelo que explica la composición química de estas sustancias. Los cannabinoides sintéticos son químicamente muy variados; lo que comparten es la capacidad de unirse a los receptores de cannabinoides. Ahora bien, en la estructura de la mayoría de los cannabinoides sintéticos podemos diferenciar cuatro partes principales: el núcleo y sus sustituyentes, la fracción de unión, el anillo y sus sustituyentes y la fracción de cola. Seleccionando la combinación adecuada de componentes moleculares se obtiene el cannabinoide sintético.
Sugerencia: vuelva a hacer clic de nuevo en una molécula para «modificar» su estado de selección.
Cannabinoid | Core | Core Substituent | Link | Ring system | Ring substituent | Tail |
---|---|---|---|---|---|---|
Apinaca | indazole | : | carboxamide | adamantyl | : | pentyl |
5F-APINACA (5F-AKB48) | indazole | : | carboxamide | adamantyl | : | 5-fluoropentyl |
AM-2201 indazolecarboxamide analogue | indazole | : | carboxamide | naphthyl | : | 5-fluoropentyl |
A-834,735 | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | tetrahydropyran-4-yl methyl |
JWH-015 | indole | : | methanone | naphthyl | : | propyl |
AM-679 | indole | : | methanone | phenyl | 2-iodo | pentyl |
Apica | indole | : | carboxamide | adamantyl | : | pentyl |
JWH-018 | indole | : | methanone | naphthyl | : | pentyl |
JWH-007 | indole | 2-methyl (core-substituent) | methanone | naphthyl | : | pentyl |
JWH-018 adamantoyl derivative | indole | : | methanone | adamantyl | : | pentyl |
AM-6527 | indole | : | carboxamide | naphthyl | : | pentyl |
AM-6527 5F derivative | indole | : | carboxamide | naphthyl | : | 5-fluoropentyl |
PB-22 | indole | : | carboxylate | quinolinyl | : | pentyl |
JWH-081 | indole | : | methanone | naphthyl | 4-methoxy | pentyl |
JWH-122 | indole | : | methanone | naphthyl | 4-methyl | pentyl |
JWH-182 | indole | : | methanone | naphthyl | 4-propyl | pentyl |
JWH-203 | indole | : | ethanone | phenyl | 2-chloro | pentyl |
JWH-210 | indole | : | methanone | naphthyl | 4-ethyl | pentyl |
JWH-250 | indole | : | ethanone | phenyl | 2-methoxy | pentyl |
JWH-251 | indole | : | ethanone | phenyl | 2-methyl (ring-substituent) | pentyl |
JWH-387 | indole | : | methanone | naphthyl | 4-bromo | pentyl |
JWH-398 | indole | : | methanone | naphthyl | 2-chloro | pentyl |
JWH-412 | indole | : | methanone | naphthyl | 4-fluoro | pentyl |
RCS-4 | indole | : | methanone | phenyl | 4-methoxy | pentyl |
RCS-4 ortho isomer | indole | : | methanone | phenyl | 2-methoxy | pentyl |
UR-144 | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | pentyl |
JWH-022 | indole | : | methanone | naphthyl | : | pent-4-enyl |
JWH-122 pentenyl 2-methylindole derivative | indole | 2-methyl (core-substituent) | methanone | naphthyl | 4-methyl | pent-4-enyl |
JWH-122 pentenyl derivative | indole | : | methanone | naphthyl | 4-methyl | pent-4-enyl |
UR -144 (-2H) | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | pent-4-enyl |
AM-1220 Azepane Isomer | indole | : | methanone | naphthyl | : | methylazepan-3-yl |
AB-005 azepane isomer | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | methylazepan-3-yl |
3-(p-Methoxybenzoyl)-N-methylindole | indole | : | methanone | phenyl | 4-methoxy | methyl |
JWH-019 | indole | : | methanone | naphthyl | : | hexyl |
UR-144 heptyl derivative | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | heptyl |
BB-22 | indole | : | carboxylate | quinolinyl | : | cyclohexylmethyl |
JWH-073 | indole | : | methanone | naphthyl | : | butyl |
JWH-073 methyl derivative | indole | : | methanone | naphthyl | 4-methyl | butyl |
RCS-4(C4) | indole | : | methanone | phenyl | 4-methoxy | butyl |
5FUR-144 | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | 5-fluoropentyl |
AM-2201 | indole | : | methanone | naphthyl | : | 5-fluoropentyl |
AM-694 | indole | : | methanone | phenyl | 2-iodo | 5-fluoropentyl |
AM-694 ethyl substituted for iodine | indole | : | methanone | phenyl | 2-ethyl | 5-fluoropentyl |
AM-694 methyl substituted for iodine | indole | : | methanone | phenyl | 2-methyl (ring-substituent) | 5-fluoropentyl |
MAM-2201 | indole | : | methanone | naphthyl | 4-methyl | 5-fluoropentyl |
STS-135 | indole | : | carboxamide | adamantyl | : | 5-fluoropentyl |
EAM-2201 | indole | : | methanone | naphthyl | 4-ethyl | 5-fluoropentyl |
5F-PB22 | indole | : | carboxylate | quinolinyl | : | 5-fluoropentyl |
AM-694 chloro derivative | indole | : | methanone | phenyl | 2-iodo | 5-chloropentyl |
JWH 018 N-(5-chloropentyl) derivative | indole | : | methanone | naphthyl | : | 5-chloropentyl |
MAM-2201 chloropentyl derivative | indole | : | methanone | naphthyl | 4-methyl | 5-chloropentyl |
UR-144 N-(5-chloropentyl) derivative | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | 5-chloropentyl |
JWH 018 N-(5-bromopentyl) derivative | indole | : | methanone | naphthyl | : | 5-bromopentyl |
AM-2232 | indole | : | methanone | naphthyl | : | 4-cyanobutyl |
A-796,260 | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | 2-morpholin-4-yl ethyl |
JWH-200 | indole | : | methanone | naphthyl | : | 2-morpholin-4-yl ethyl |
WIN 48,098 / Pravadoline | indole | 2-methyl (core-substituent) | methanone | phenyl | 4-methoxy | 2-morpholin-4-yl ethyl |
AB-005 | indole | : | methanone | cyclopropyl | 2,2,3,3-tetramethyl | methylpiperidin-2-yl methyl |
AM-1220 | indole | : | methanone | naphthyl | : | methylpiperidin-2-yl methyl |
AM-1248 | indole | : | methanone | adamantyl | : | methylpiperidin-2-yl methyl |
AM-1248 azepane isomer | indole | : | methanone | adamantyl | : | methylazepan-3-yl |
AM-2233 | indole | : | methanone | phenyl | 2-iodo | methylpiperidin-2-yl methyl |
JWH-250 1-(2-methylene-N-methyl-piperidyl) derivative | indole | : | ethanone | phenyl | 2-methoxy | methylpiperidin-2-yl methyl |
CRA-13 | naphthalene | : | methanone | naphthyl | : | pentoxy |
JWH-307 | pyrrole | 5-(2-fluoro)phenyl | methanone | naphthyl | : | pentyl |
JWH-370 | pyrrole | 5-(2-methyl)phenyl | methanone | naphthyl | : | pentyl |
JWH-368 | pyrrole | 5-(3-fluoro)phenyl | methanone | naphthyl | : | pentyl |
JWH-307 bromine analogue | pyrrole | 5-(2-bromo)phenyl | methanone | naphthyl | : | pentyl |
JWH-030 | pyrrole | : | methanone | naphthyl | : | pentyl |
JWH-145 | pyrrole | 5-phenyl | methanone | naphthyl | : | pentyl |
AB-PINACA | indazole | : | carboxamide | carbamoyl | isopropyl | pentyl |
ADB-FUBINACA | indazole | : | carboxamide | carbamoyl | tert-butyl | fluorobenzyl |
ADB-PINACA | indazole | : | carboxamide | carbamoyl | tert-butyl | pentyl |
AB-CHMINACA | indazole | : | carboxamide | carbamoyl | isopropyl | cyclohexylmethyl |
ADB-CHMINACA | indazole | : | carboxamide | carbamoyl | tert-butyl | cyclohexylmethyl |
MDMB-CHMICA | indole | : | carboxamide | methoxycarbonyl | tert-butyl | cyclohexylmethyl |
5F-MDMB-PINACA | indazole | : | carboxamide | methoxycarbonyl | tert-butyl | 5-fluoropentyl |
MDMB-FUBINACA | indazole | : | carboxamide | methyl-3,3-dimethylbutanoate | : | fluorobenzyl |
CUMYL-4CN-BINACA | indazole | : | carboxamide | CUMYL | : | 4-cyanobutyl |
CUMYL-4CN-BINACA | indazole | : | carboxamide | CUMYL | : | 4-cyanobutyl |
MO-CHMINACA | indazole | : | carboxylate | methoxycarbonyl | tert-butyl | cyclohexylmethyl |
Apinaca | cannabinoid |
/sites/default/files/Apinaca.png |
371 | 517 | apinaca |
5F-APINACA (5F-AKB48) | cannabinoid | /sites/default/files/AKB-48Fv2.png | 391 | 528 | akb48f |
AM-2201 indazolecarboxamide analogue | cannabinoid | /sites/default/files/AM-2201%2520indazolecarboxamide.png | 425 | 528 | am2201inda |
A-834,735 | cannabinoid | /sites/default/files/A-834_735.png | 357 | 396 | a834735 |
JWH-015 | cannabinoid | /sites/default/files/JWH-015.png | 356 | 455 | jwh015 |
AM-679 | cannabinoid | /sites/default/files/AM-679.png | 356 | 425 | am679 |
Apica | cannabinoid | /sites/default/files/apicaV2.png | 371 | 517 | apica |
JWH-018 | cannabinoid | /sites/default/files/jwh-018v2.png | 356 | 517 | jwh018 |
JWH-007 | cannabinoid | /sites/default/files/JWH-007.png | 356 | 517 | jwh007 |
JWH-018 adamantoyl derivative | cannabinoid | /sites/default/files/JWH-018-adamantoyl-derivativeV2.png | 356 | 467 | jwh018adade |
AM-6527 | cannabinoid | /sites/default/files/AM-6527.png | 425 | 517 | am6527 |
PB-22 | cannabinoid | /sites/default/files/PB-22.png | 425 | 517 | pb22 |
JWH-081 | cannabinoid | /sites/default/files/JWH-081.png | 445 | 517 | jwh081 |
JWH-122 | cannabinoid | /sites/default/files/JWH-122.png | 409 | 517 | jwh122 |
JWH-182 | cannabinoid | /sites/default/files/JWH-182.png | 498 | 517 | jwh182 |
JWH-203 | cannabinoid | /sites/default/files/JWH-203.png | 356 | 517 | jwh203 |
JWH-210 | cannabinoid | /sites/default/files/JWH-210.png | 445 | 517 | jwh210 |
JWH-250 | cannabinoid | /sites/default/files/JWH-250.png | 409 | 517 | jwh250 |
JWH-251 | cannabinoid | /sites/default/files/JWH-251.png | 356 | 517 | jwh251 |
JWH-387 | cannabinoid | /sites/default/files/JWH-387.png | 409 | 517 | jwh387 |
JWH-398 | cannabinoid | /sites/default/files/JWH-398.png | 356 | 517 | jwh398 |
JWH-412 | cannabinoid | /sites/default/files/JWH-412.png | 409 | 517 | jwh412 |
RCS-4 | cannabinoid | /sites/default/files/RCS-4.png | 445 | 425 | rcs4 |
RCS-4 ortho isomer | cannabinoid | /sites/default/files/RCS-4%2520ortho%2520isomer.png | 356 | 425 | rcs4oriso |
UR-144 | cannabinoid | /sites/default/files/UR-144.png | 350 | 447 | ur144 |
JWH-022 | cannabinoid | /sites/default/files/JWH-022.png | 356 | 517 | jwh022 |
JWH-122 pentenyl 2-methylindole derivative | cannabinoid | /sites/default/files/JWH-122%2520pentenyl%25202-methylindole.png | 409 | 517 | jwh122p2md |
JWH-122 pentenyl derivative | cannabinoid | /sites/default/files/JWH-122%2520pentenyl.png | 409 | 517 | jwh122pd |
UR -144 (-2H) | cannabinoid | /sites/default/files/UR-144%2520(-2H).png | 350 | 447 | ur1442h |
AM-1220 Azepane Isomer | cannabinoid | /sites/default/files/AM-1220%2520azepane%2520isomer.png | 356 | 513 | am1220azis |
AB-005 azepane isomer | cannabinoid | /sites/default/files/AB-005%2520azepane%2520isomer.png | 350 | 443 | ab005azeiso |
3-(p-Methoxybenzoyl)-N-methylindole | cannabinoid | /sites/default/files/3-%28p-methoxybenzoyl%29-N-methylindole.png | 445 | 301 | 3pmnm |
JWH-019 | cannabinoid | /sites/default/files/JWH-019.png | 391 | 528 | jwh019 |
UR-144 heptyl derivative | cannabinoid | /sites/default/files/UR-144%2520heptyl.png | 408 | 509 | ur144hep |
BB-22 | cannabinoid | /sites/default/files/BB-22.png | 425 | 466 | bb22 |
JWH-073 | cannabinoid | /sites/default/files/JWH-073.png | 356 | 466 | jwh073 |
JWH-073 methyl derivative | cannabinoid | /sites/default/files/JWH-073%2520methyl.png | 409 | 466 | jwh073met |
RCS-4(C4) | cannabinoid | /sites/default/files/RCS-4%2520(C4)(1).png | 445 | 374 | rcs4c4 |
5FUR-144 | cannabinoid | /sites/default/files/5FUR-144.png | 391 | 458 | 5fur144 |
AM-2201 | cannabinoid | /sites/default/files/AM-2201.png | 391 | 528 | am2201 |
AM-694 | cannabinoid | /sites/default/files/AM-694.png | 391 | 436 | am694 |
AM-694 ethyl substituted for iodine | cannabinoid | /sites/default/files/AM-694%2520ethyl%2520for%2520iodine.png | 391 | 436 | am694ethio |
AM-694 methyl substituted for iodine | cannabinoid | /sites/default/files/AM-694%2520methyl%2520for%2520iodine.png | 391 | 436 | am694methio |
MAM-2201 | cannabinoid | /sites/default/files/MAM-2201.png | 409 | 528 | mam2201 |
STS-135 | cannabinoid | /sites/default/files/STS-135v2.png | 391 | 528 | sts135 |
EAM-2201 | cannabinoid | /sites/default/files/EAM-2201.png | 445 | 528 | eam2201 |
5F-PB22 | cannabinoid | /sites/default/files/5F-PB-22.png | 425 | 528 | 5fpb22 |
AM-694 chloro derivative | cannabinoid | /sites/default/files/AM-694%2520chloro.png | 391 | 436 | am694chlo |
JWH 018 N-(5-chloropentyl) derivative | cannabinoid | : | : | : | jwh018n5chlo |
MAM-2201 chloropentyl derivative | cannabinoid | /sites/default/files/MAM-2201%2520N-(5-chloropentyl).png | 409 | 528 | mam2201chlo |
UR-144 N-(5-chloropentyl) derivative | cannabinoid | /sites/default/files/UR-144%2520N-(5-chloropentyl).png | 391 | 458 | ur144n5chlo |
JWH 018 N-(5-bromopentyl) derivative | cannabinoid | /sites/default/files/JWH-018%2520N-(5-bromopentyl).png | 391 | 528 | jwh018n5bro |
AM-2232 | cannabinoid | /sites/default/files/AM-2232.png | 391 | 528 | am2232 |
A-796,260 | cannabinoid | /sites/default/files/A-796_260.png | 350 | 487 | a796260 |
JWH-200 | cannabinoid | /sites/default/files/JWH-200.png | 356 | 557 | jwh200 |
WIN 48,098 / Pravadoline | cannabinoid | /sites/default/files/WIN%252048_098-pravadoline.png | 445 | 466 | win48098pr |
AB-005 | cannabinoid | /sites/default/files/AB-005.png | 350 | 454 | ab005 |
AM-1220 | cannabinoid | /sites/default/files/AM-1220.png | 356 | 524 | am1220 |
AM-1248 | cannabinoid | /sites/default/files/AM-1248.png | 356 | 474 | am1248 |
AM-2233 | cannabinoid | /sites/default/files/AM-2233.png | 356 | 433 | am2233 |
JWH-250 1-(2-methylene-N-methyl-piperidyl) derivative | cannabinoid | /sites/default/files/JWH-250%2520Nmpm%2520deriv.png | 409 | 524 | jwh250nmpm |
CRA-13 | cannabinoid | /sites/default/files/CRA-13.png | 457 | 469 | cra13 |
JWH-307 | cannabinoid | /sites/default/files/JWH-307.png | 464 | 510 | jwh307 |
JWH-370 | cannabinoid | /sites/default/files/JWH-370.png | 464 | 510 | jwh370 |
JWH-368 | cannabinoid | /sites/default/files/JWH-368.png | 493 | 510 | jwh368 |
JWH-307 bromine analogue | cannabinoid | /sites/default/files/JWH-307%2520bromine.png | 464 | 510 | jwh307bro |
JWH-030 | cannabinoid | /sites/default/files/JWH-030.png | 310 | 510 | jwh030 |
JWH-145 | cannabinoid | /sites/default/files/JWH-145.png | 464 | 510 | jwh145 |
AM-6527 5F derivative | cannabinoid | /sites/default/files/AM-6527%25205F%2520derivative.png | 425 | 528 | am65275fderivative |
AM-1248 azepane isomer | cannabinoid | /sites/default/files/AM-1248-azepane.png | 358 | 451 | am1248azepaneisomer |
CUMYL | ring | /sites/default/files/CUMYL%2520R.gif | 207 | 110 | : |
naphthyl | ring | /sites/default/files/naphthyl%2520core.png | 224 | 144 | : |
adamantyl | ring | /sites/default/files/adamantyl%2520ring%2520system.png | 157 | 177 | : |
cyclopropyl | ring | /sites/default/files/cyclopropyl%2520ring%2250system.png | 144 | 177 | : |
quinolinyl | ring | /sites/default/files/quinolinyl%2520ring%2520system.png | 177 | 225 | : |
phenyl | ring | /sites/default/files/phenyl%2520ring%2520system.png | 130 | 144 | : |
2-methyl (ring-substituent) | ringSubstituent | : | : | : | blank |
2-ethyl | ringSubstituent | : | : | : | blank |
2-methoxy | ringSubstituent | : | : | : | blank |
4-methoxy | ringSubstituent | : | : | : | blank |
2-iodo | ringSubstituent | : | : | : | :blank |
2-chloro | ringSubstituent | : | : | : | blank |
4-methyl | ringSubstituent | : | : | : | blank |
4-ethyl | ringSubstituent | : | : | : | blank |
4-propyl | ringSubstituent | : | : | : | blank |
4-fluoro | ringSubstituent | : | : | : | blank |
4-bromo | ringSubstituent | : | : | : | blank |
2,2,3,3-tetramethyl | ringSubstituent | : | : | : | blank |
isopropyl | ringSubstituent | : | : | : | blank |
tert-butyl | ringSubstituent | : | : | : | blank |
methyl | tail | /sites/default/files/methylv2.png | 36 | 90 | : |
propyl | tail | /sites/default/files/propyl.png | 83 | 171 | : |
butyl | tail | /sites/default/files/butyl.png | 130 | 198 | : |
pentyl | tail | /sites/default/files/pentyl2.png | 183 | 221 | |
pent-4-enyl | tail | /sites/default/files/pentenyl%2520tail.png | 130 | 198 | : |
pentoxy | tail | /sites/default/files/pentoxy%2520tail.png | 177 | 280 | : |
4-cyanobutyl | tail | /sites/default/files/4-cyanobutyl%2520T.gif | 156 | 78 | : |
5-fluoropentyl | tail | /sites/default/files/fluoropentyl%2520tail.png | 130 | 252 | : |
5-chloropentyl | tail | /sites/default/files/chloropentyl%2520tail.png | 130 | 252 | : |
5-bromopentyl | tail | /sites/default/files/bromopentyl%2520tail1.png | 130 | 252 | : |
hexyl | tail | /sites/default/files/hexyl2.png | 177 | 280 | : |
heptyl | tail | /sites/default/files/heptyl2.png | 177 | 279 | : |
cyclohexylmethyl | tail | /sites/default/files/cyclohexylmethyl2.png | 177 | 198 | : |
fluorobenzyl | tail | /sites/default/files/5-FLUOROBENZYL%2520T.gif | 225 | 125 | : |
methylpiperidin-2-yl methyl | tail | /sites/default/files/methylpiperidin-2-yl%2520methyl%2520tail.png | 195 | 168 | : |
methylazepan-3-yl | tail | /sites/default/files/methylazepan-3-yl%2520tail.png | 210 | 157 | : |
tetrahydropyran-4-yl methyl | tail | /sites/default/files/tetrahydropyran-4-yl%2520tail.png | 195 | 139 | : |
2-morpholin-4-yl ethyl | tail | /sites/default/files/2-morpholin-4-yl%2520tail.png | 176 | 201 | : |
indole | core | /sites/default/files/indole.png | 213 | 144 | : |
indazole | core | /sites/default/files/Indazole%2520core.png | 213 | 144 | : |
pyrrole | core | /sites/default/files/pyrrole%2520core.png | 124 | 120 | : |
naphthalene | core | /sites/default/files/naphthylene%2520core.png | 224 | 144 | : |
2-methyl (core-substituent) | coreSubstituent | : | : | : | : |
5-phenyl | coreSubstituent | : | : | : | : |
5-(2-methyl)phenyl | coreSubstituent | : | : | : | : |
5-(2-fluoro)phenyl | coreSubstituent | : | : | : | : |
5-(2-bromo)phenyl | coreSubstituent | : | : | : | : |
5-(3-fluoro)phenyl | coreSubstituent | : | : | : | : |
methanone | link | /sites/default/files/methanone.png | 117 | 130 | : |
ethanone | link | /sites/default/files/ethanone.png | 144 | 130 | : |
carboxamide | link | /sites/default/files/carboxamide%2520linker.png | 144 | 130 | : |
carboxylate | link | /sites/default/files/carboxylate%2520linker.png | 144 | 130 | : |
MDMB-CHMICA | cannabinoid | /sites/default/files/MDMB-CHMICA-new.png | 319 | 372 | mdmb-chmica |
AB-PINACA | cannabinoid | /sites/default/files/AB-PINACAv2.gif | 295 | 414 | ab-pinaca |
ADB-FUBINACA | cannabinoid | /sites/default/files/ADB-FUBINACAv2.gif | 331 | 387 | adb-fubinaca |
ADB-PINACA | cannabinoid | /sites/default/files/ADB-PINACAv2.gif | 285 | 431 | adb-pinaca |
AB-CHMINACA | cannabinoid | /sites/default/files/AB-CHMINACAv2.gif | 295 | 386 | ab-chminaca |
ADB-CHMINACA | cannabinoid | /sites/default/files/ADB-CHMINACAv2.gif | 290 | 389 | adb-chminaca |
5F-MDMB-PINACA | cannabinoid | /sites/default/files/5F-MDMB-PINACA--5F-ADBv2.gif | 312 | 428 | 5f-mdmb-pinaca |
MDMB-FUBINAC | cannabinoid | /sites/default/files/MDMB-FUBINACAv2.gif | 429 | 394 | mdmb-fubinaca |
CUMYL-4CN-BINACA | cannabinoid | /sites/default/files/CUMYL-4CN-BINACAv2.gif | 294 | 525 | cumyl-4cn-binaca |
MO-CHMINACA | cannabinoid | /sites/default/files/MO-CHMINACAv2.gif | 319 | 406 | mo-chminaca |
carbamoyl | ring | /sites/default/files/Carbamoyl%2520R.gif | 192 | 186 | : |
methoxycarbonyl | ring | /sites/default/files/methoxycarbonyl%2520R.gif | 255 | 184 | : |
Synthetic cannabinoid Apinaca
A synthetic cannabinoid that belongs to the adamantyl indazolecarboxamide family. It takes its codename from its systematic chemical name: N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide. It was first reported to the EMCDDA in May 2012 in Bulgaria when it was found in a smoking mixture product called ‘White Widow’. This substance also goes by the name ‘AKB-48’, the name of a popular all-girl band from Japan. This substance was critically reviewed by the WHO’s 36th Expert Committee on Drug Dependence in 2014.
Synthetic cannabinoid 5F-APINACA (5F-AKB48)
A synthetic cannabinoid of the adamantyl indazolecarboxamide family. It is chemically related to APINACA. It was first reported to the EMCDDA when it was detected in a herbal smoking mixture seized by Police in Latvia in September 2012. This substance was critically reviewed by the WHO’s 38th Expert Committee on Drug Dependence in 2016. It has been internationally controlled and will be included in Schedule II of the 1971 UN Convention on Psychotropic Substances.
Synthetic cannabinoid AM-2201 indazolecarboxamide analogue
A is a synthetic cannabinoid of the naphthyl indazolecarboxamide family. It was first reported to the EMCDDA in October 2012 by Finland where it was detected as a component in a white powder.
Synthetic cannabinoid Apica
A synthetic cannabinoid of the adamantyl indolecarboxamide family. It takes its codename from its systematic chemical name: N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide. It was first reported to the EMCDDA in July 2012 and has been detected in bulk powders and in herbal smoking mixtures.
Synthetic cannabinoid JWH-018
A synthetic cannabinoid of the naphthoylindole family. It was first reported to the EMCDDA in December 2008 by Germany and Austria, being found as an ingredient in different varieties of ‘Spice’ products. JWH-018 is a controlled substance in many EU Member States. This substance is now internationally controlled and listed in Schedule II of the of the 1971 UN Convention on Psychotropic Substances.
Synthetic cannabinoid JWH-018 adamantoyl derivative
A synthetic cannabinoid of the adamantoylindole family. It was first reported to the EMCDDA in February 2011 when it was detected in branded herbal smoking mixtures such as ‘Nuclear Reactor’, ‘Toxic Waste’ and ‘Radio Active’. This substance also goes by the codename AB-001.
Synthetic cannabinoid AM-6527
A synthetic cannabinoid of the naphthyl indolecarboxamide family. It was first reported to the EMCDDA in July 2012 when it was detected by authorities in Finland. This substance has several codenames such as ‘MN24’, ‘NNIE’, ‘NNEI’, ‘NNE1’.
Synthetic cannabinoid PB-22
A synthetic cannabinoid of the quinolinyl indolecarboxylate family. It was first reported to the EMCDDA in November 2012 when it was detected by Finnish customs authorities in a seizure of 54 kilograms of light brown powder. PB-22 also goes by the codename ‘QUPIC’.
Synthetic cannabinoid JWH-022
A synthetic cannabinoid that belongs to the naphthoylindole family. This substance was first reported to the EMCDDA in November 2011 by the United Kingdom. It is normally found along with AM-2201 and it is known to be formed when AM-2201 breaks down metabolically and by thermal decomposition.
Synthetic cannabinoid AM-1220 Azepane Isomer
A synthetic cannabinoid that belongs to the naphthoylindole family. This substance was reported to the EMCDDA in May 2011. It is thought to be a by-product formed during the production of AM-1220.
Synthetic cannabinoid JWH-019
A synthetic cannabinoid receptor agonist that belongs to the naphthoylindole family. It was first reported to the EMCDDA in October 2010 by Finland. It has been found in herbal smoking mixtures and powders on its own and with other synthetic cannabinoids.
Synthetic cannabinoid BB-22
Little is known about this substance, a quinolinyl indolecarboxylate which shares some structural features similar to known synthetic cannabinoids. It was reported to the EMCDDA in January 2013 when it was detected in powders seized by Spanish authorities. BB-22 also goes by the codename ‘QUCHIC’.
Synthetic cannabinoid AM-2201
A synthetic cannabinoid that belongs to the naphthoylindole family. It was first reported to the EMCDDA in January 2011 by Latvian authorities and has been frequently reported ever since. Use of AM-2201 has been associated with convulsions. This substance is now internationally controlled and listed in Schedule II of the of the 1971 UN Convention on Psychotropic Substances.
Synthetic cannabinoid STS-135
A synthetic cannabinoid that belongs to the adamantyl indolecarboxamide family. It was first reported to the EMCDDA in June 2012 by Hungary and has been detected in powders and in branded herbal smoking mixtures such as ‘Armageddon’. STS-135 was the codename for the 135th mission of the American Space Shuttle programme.
Synthetic cannabinoid 5F-PB22
A synthetic cannabinoid of the quinolinyl indolecarboxylate family. This substance was first reported to the EMCDDA in March 2013 by Belgian authorities. Little is known about this novel compound.
Synthetic cannabinoid JWH 018 N-(5-chloropentyl) derivative
A synthetic cannabinoid that belongs to the naphthoylindole family. It was first reported to the EMCDDA by Germany in July 2012 and has been found often in combination with other synthetic cannabinoids in branded herbal smoking mixtures such as ‘Black Jack Silver’, ‘Black Jack Gold’, ‘New Bonzai Sommernight’ and ‘New Bonzai’.
Synthetic cannabinoid JWH 018 N-(5-bromopentyl) derivative
A synthetic cannabinoid that belongs to the naphthoylindole family. This brominated compound was reported to the EMCDDA by Germany in July 2012 when it was identified as one of the synthetic cannabinoids present in a herbal smoking mixture branded ‘XOXO’.
Synthetic cannabinoid AM-2232
A synthetic cannabinoid that belongs to the naphthoylindole family. It is the only synthetic cannabinoid monitored by the EMCDDA where the tail includes a nitrile group. It was first notified to the EMCDDA by Germany in December 2011 when it was identified as a component of a herbal smoking mixture branded ‘Summerlicious’.
Synthetic cannabinoid JWH-200
A synthetic cannabinoid that belongs to the naphthoylindole family. It was first reported to the EMCDDA in December 2009 when it was detected by authorities in Lithuania in a sample seized by border officials. It has since been detected in powders and in herbal smoking mixtures.
Synthetic cannabinoid AM-1220
A synthetic cannabinoid that belongs to the naphthoylindole family. It was first reported to the EMCDDA in May 2011 when it was detected by German authorities in a herbal smoking mixture branded ‘Soulman’.
Synthetic cannabinoid AM-1248
A cannabinoid receptor agonist of the adamantoylindole type. It was first reported to the EMCDDA in September 2012 when it was detected by German authorities in a herbal smoking mixture branded ‘Annihilation’.
Synthetic cannabinoid CRA-13
The first synthetic cannabinoid reported to the EMCDDA that belongs to the naphthoylnaphthalene family. It was reported in January 2011 by German authorities as a minor ingredient in a herbal smoking mixture. CRA-13 also goes by the codenames ‘CB-13’ and ‘SAB-378’.
Synthetic cannabinoid JWH-030
A synthetic cannabinoid of the naphthoylpyrrole family. It was reported to the EMCDDA in March 2013 by German authorities who detected it in a herbal smoking mixture also containing other (related) synthetic cannabinoids such as JWH-307 and JWH-145.
Synthetic cannabinoid A-834,735
A synthetic cannabinoid that belongs to the cyclopropylindole family. It was reported to the EMCDDA in January 2013 by Polish authorities who detected it in herbal smoking mixtures labelled ‘Sunny’ and ‘June Up’.
Synthetic cannabinoid AM-679
A synthetic cannabinoid that belongs to the benzoylindole family. It was reported to the EMCDDA in January 2012 by Italian authorities who detected it in a package of powder that was marked ‘AM XIAO’.
Synthetic cannabinoid JWH-081
A synthetic cannabinoid that belongs to the naphthoylindole family. It emerged in Europe in June 2010 when it was reported to the EMCDDA by Latvia, Germany, Finland, Austria and Norway. It is frequently detected in herbal smoking mixtures, often in combination with other synthetic cannabinoids.
Synthetic cannabinoid JWH-122
A synthetic cannabinoid receptor agonist that belongs to the naphthoylindole family. It was first reported to the EMCDDA in July 2010 by Latvian authorities. It is still present in the market and is often found as a component of herbal smoking mixtures containing multiple synthetic cannabinoids. It has been associated with intoxications in several countries.
Synthetic cannabinoid JWH-182
A synthetic cannabinoid that belongs to the naphthoylindole family. It was reported to the EMCDDA in February 2011 by Danish authorities. This is the only report of this substance in the context of the EU Early warning system.
Synthetic cannabinoid JWH-203
A synthetic cannabinoid that belongs to the phenylacetylindole family. It was first reported to the EMCDDA in October 2010 by Latvian authorities. It has been found in bulk powders and in branded herbal smoking blends such as ‘Aura Chrome’ and ‘Jah RUSH’.
Synthetic cannabinoid JWH-210
A synthetic cannabinoid that belongs to the naphthoylindole family. It was first reported to the EMCDDA in September 2010 by German authorities and has been detected regularly in bulk powders and in herbal smoking mixtures. Interestingly, it has been detected in herbal cannabis samples.
Synthetic cannabinoid JWH-250
A synthetic cannabinoid that belongs to the phenylacetylindole family. It was first reported to the EMCDDA in October 2009 by the German authorties and has remained in the market since then. It has been detected in bulk powders as well as in branded herbal smoking mixtures such as ‘Jamaican Gold’ and ‘Blast off’, frequently in combination with other synthetic cannabinoids. This substance was critically reviewed by the WHO’s 36th Expert Committee on Drug Dependence in 2014.
Synthetic cannabinoid JWH-251
A synthetic cannabinoid from the phenylacetylindole family. It was first reported to the EMCDDA in February 2011 by German authorities when it was the sole cannabimimetic detected in a branded herbal smoking mixture called ‘Aura Silver’.
Synthetic cannabinoid JWH-387
A synthetic cannabinoid belonging to the naphthoylindole family. This brominated compound was reported to the EMCDDA in July 2011 by German authorities who detected it in a white powder. This is the only report of this substance in the context of the Early warning system.
Synthetic cannabinoid JWH-398
A synthetic cannabinoid that belongs to the naphthoylindole family. It was first reported to the EMCDDA by the United Kingdom in October 2009 in 3 separate branded products, each time in combination with other cannabimimetic substances. It is not frequently reported to EMCDDA in the context of the EU Early warning system.
Synthetic cannabinoid JWH-412
A synthetic cannabinoid that belongs to the naphthoylindole family. It was reported to the EMCDDA in August 2011 by the German authorities, however, it has not been reported by any other countries in the context of the EU Early warning system.
Synthetic cannabinoid RCS-4
A synthetic cannabinoid that belongs to the benzoylindole family. The first formal notification to the EMCDDA was in July 2010 by Hungarian authorities, however, prior to this information had been received from Belarus regarding its detection. It is also known by the codenames ‘NRG-4’ and ‘DD001’. Other substances that have been detected with RCS-4 compounds are phenazepam and alphamethyltryptamine. This substance was critically reviewed by the WHO’s 36th Expert Committee on Drug Dependence in 2014.
Synthetic cannabinoid RCS-4 ortho isomer
A synthetic cannabinoid that belongs to the benzoylindole family. As the name suggests, it is closely related to RCS-4. It was first reported to the EMCDDA in April 2011 when it was detected in a sample of powder seized by Swedish authorities. Other substances that have been detected with RCS-4 compounds are phenazepam and alphamethyltryptamine.
Synthetic cannabinoid RCS-4 (C4)
A synthetic cannabinoid that belongs to the benzoylindole family. As the name suggests, it is closely related to RCS-4, differing only by the length of the alkyl ‘tail’. It was reported to the EMCDDA in June 2011 by Hungarian authorities who detected it in a mixture with RCS-4. Other substances that have been detected with RCS-4 compounds are phenazepam and alphamethyltryptamine.
Synthetic cannabinoid UR-144
A synthetic cannabinoid of the tetramethylcyclopropyl indolyl ketone family. It was first reported to the EMCDDA in February 2012 by Finland in a bulk powder and Poland in a branded herbal smoking mixture called ‘Magic Tree’. It acts as a selective agonist of the cannabinoid receptor CB2 and is often found in combination with other cannabimimetics. It is also known by the codenames ‘KM X-1’, ‘TMCP-018’, ‘MN-001’, ‘YX-17’. This substance was critically reviewed by the WHO’s 36th Expert Committee on Drug Dependence in 2014.
Synthetic cannabinoid JWH-122 pentenyl 2-methylindole derivative
A synthetic cannabinoid that belongs to the naphthoylindole family. Its first and only report to the EMCDDA was in July 2012 when it was detected in the United Kingdom in a sample that contained other cannabimimetic components. It is thought that this substance may be produced during the synthesis of MAM-2201.
Synthetic cannabinoid JWH-122 pentenyl derivative
A synthetic cannabinoid that belongs to the naphthoylindole family. The first report to the EMCDDA was in July 2012 when it was detected in the United Kingdom in a sample that contained other cannabimimetic components. It is thought that this substance may be produced during the synthesis of MAM-2201.
Synthetic cannabinoid UR-144 (-2H)
A synthetic cannabinoid of the tetramethylcyclopropyl indolyl ketone family. It was first reported to the EMCDDA in July 2012 by French authorities in branded herbal smoking mixtures called ‘Fire Ice’, ‘Pulse’, ‘Buzz’ and ‘Tribe’. It is thought that this substance may be produced during the synthesis of 5FUR-144.
Synthetic cannabinoid AB-005
A synthetic cannabinoid of the tetramethylcyclopropyl indolyl ketone family. It was first reported to the EMCDDA in November 2012 by German authorities. It was detected in a branded herbal smoking mixture called ‘Star of Fire’. The azepane isomer of AB-005 was also detected in this product.
Synthetic cannabinoid AB-005 azepane isomer
A synthetic cannabinoid of the tetramethylcyclopropyl indolyl ketone family. It was first reported to the EMCDDA in November 2012 by German authorities. It was detected in a branded herbal smoking mixture called ‘Star of Fire’ and is thought to be a by-product formed during the production of AB-005 (which was also found in the product).
Synthetic cannabinoid 3-(p-Methoxybenzoyl)-N-methylindole
A synthetic cannabinoid receptor agonist belongs to the benzoylindole family. The one and only report of this substance to the EMCDDA is from Austria in February 2012 when it was detected in a branded herbal smoking mixture called ‘Brooker Limited Edition’. It is thought that this substance is a chemical intermediate formed during the production of RCS-4.
Synthetic cannabinoid UR-144 heptyl derivative
A synthetic cannabinoid of the tetramethylcyclopropyl indolyl ketone family. It was first reported to the EMCDDA in April 2013 by Swedish authorities who detected it in a sample of white powder. It is thought that this substance will have similar properties to UR-144, as it differs only by the length of the alkyl ‘tail’.
Synthetic cannabinoid JWH-073
A synthetic cannabinoid belonging to the naphthoylindole family. It was first specifically reported to the EMCDDA by Denmark in March 2009 and has featured prominently in this market since then. It is similar to JWH-018, differing only in the length of the alkyl ‘tail’. It has been found in bulk powders, branded herbal smoking mixtures and also in resinous products. It is a controlled substances in many European countries. This substance was critically reviewed by the WHO’s 36th Expert Committee on Drug Dependence in 2014 and in 2016.
Synthetic cannabinoid JWH-073 methyl derivative
A synthetic cannabinoid belonging to the naphthoylindole family. It was first reported to the EMCDDA in April 2010 by German authorities who identified it in a branded herbal smoking mixture called ‘King B’. It is not frequently found, the only other instance being reported by Italian authorities in a sample that also contained JWH-073.
Synthetic cannabinoid 5FUR-144
A synthetic cannabinoid of the tetramethylcyclopropyl indolyl ketone family. It was first reported to the EMCDDA by the Latvian authorities in February 2012. It has been found in the form of bulk powders as well as in herbal smoking mixtures and in resinous products. It is also known by the codename ‘XLR-11’. This substance was critically reviewed by the WHO’s 38th Expert Committee on Drug Dependence in 2016. It has been internationally controlled and will be included in Schedule II of the of the 1971 UN Convention on Psychotropic Substances.
Synthetic cannabinoid AM-694
A synthetic cannabinoid that belongs to the benzoylindole family. It was first reported to the EMCDDA in July 2010 by the Irish authorities, having been detected in a herbal smoking product called ‘Shamrock’.
Synthetic cannabinoid AM-694 ethyl substituted for iodine
A synthetic cannabinoid that belongs to the benzoylindole family. As the name suggests, it is closely related to AM-694. It was reported to the EMCDDA in July 2012 in a sample of herbal smoking mixture from the United Kingdom that contained other derivatives of AM-694 and is thought to be a by-product of attempts at synthetic cannabinoid production.
Synthetic cannabinoid AM-694 methyl substituted for iodine
A synthetic cannabinoid that belongs to the benzoylindole family. As the name suggests, it is closely related to AM-694. It was reported to the EMCDDA in July 2012 in a sample of herbal smoking mixture from the United Kingdom that contained other derivatives of AM-694 and is thought to be a by-product of attempts at synthetic cannabinoid production.
Synthetic cannabinoid MAM-2201
A synthetic cannabinoid that belongs to the naphthoylindole family. It can be viewed as either a ring-methylated derivative of AM-2201 or an alkyl-fluorinated version of JWH-122. It was first reported to the EMCDDA in June 2011 by authorities in the Netherlands, but is currently a common ingredient of herbal smoking mixtures containing other synthetic cannabinoids. It has been reported to be associated with acute transient psychotic episodes.
Synthetic cannabinoid JWH-007
A synthetic cannabinoid that belongs to the naphthoylindole family. It was reported to the EMCDDA by German authorities in May 2011 having been detected in branded herbal smoking mixtures called “Sence” and “Oceanic Herbs”.
Synthetic cannabinoid EAM-2201
A synthetic cannabinoid that belongs to the naphthoylindole family. It can be viewed as either a ring-ethylated derivative of AM-2201 or an alkyl-fluorinated version of JWH-210. It was first reported to the EMCDDA in February 2013 by Swedish authorities in a sample of powder. It has also been detected in herbal smoking mixtures in combination with other synthetic cannabinoids.
Synthetic cannabinoid JWH-015
A synthetic cannabinoid receptor agonist that belongs to the naphthoylindole family. It has been reported to the EMCDDA only once, back in July 2010 when it was detected in a branded herbal smoking mixture called ‘Topaz’ by the authorities in Austria. The herbal material was identified as Damiana (Turnera diffusa).
Synthetic cannabinoid AM-694 chloro derivative
A synthetic cannabinoid that belongs to the benzoylindole family. As the name suggests, it is closely related to AM-694. It was reported to the EMCDDA in December 2011 by German authorities who detected it in a branded herbal smoking mixture called ‘Atomic Bomb’. The product also contained the parent molecule AM-694.
Synthetic cannabinoid MAM-2201 chloropentyl derivative
A synthetic cannabinoid that belongs to the naphthoylindole family. It can be viewed as the alkyl-chlorinated derivative of JWH-122. It was first reported to the EMCDDA in July 2012 in a sample of herbal smoking mixture from the United Kingdom that contained other derivatives of AM-2201 and is thought to be a by-product of attempts at synthetic cannabinoid production.
Synthetic cannabinoid UR-144 N-(5-chloropentyl) derivative
A synthetic cannabinoid of the tetramethylcyclopropyl indolyl ketone family, similar in structure to 5FUR-144. It was first reported to the EMCDDA in December 2012 by Hungarian authorities and subsequently in April 2013 by Croatian authorities. In each case, other cannabinoids were present including 5FUR-144./p>
Synthetic cannabinoid A-796,260
A synthetic cannabinoid of the tetramethylcyclopropyl indolyl ketone family. It is structurally related to UR-144 and to 5FUR-144. It has been reported to the EMCDDA on one occasion by Belgian authorities. It acts as a selective potent agonist of the cannabinoid receptor CB2.
Synthetic cannabinoid WIN 48,098/ Pravadoline
A synthetic cannabinoid that belongs to the benzoylindole family. It was detected in May 2011 by both the German and Polish authorities. It has been found in powders and in herbal smoking mixtures, sometimes in combination with other synthetic cannabinoids. It has been shown to be nephrotoxic in an animal model (dogs).
Synthetic cannabinoid JWH-145
A synthetic cannabinoid of the naphthoylpyrrole family. It was reported to the EMCDDA in March 2013 by German authorities who detected it in a herbal smoking mixture also containing other (related) synthetic cannabinoids such as JWH-307 and JWH-030.
Synthetic cannabinoid AM-2233
A synthetic cannabinoid that belongs to the benzoylindole family. It was first reported to the EMCDDA in August 2011 by Finnish authorities after it was detected in a seizure of white powder. It has also been detected in herbal smoking mixtures, on its own and in combination with other synthetic cannabinoids.
Synthetic cannabinoid JWH-250 1-(2-methylene-N-methyl-piperidyl) derivative
A synthetic cannabinoid that belongs to the phenylacetylindole family. It was first reported to the EMCDDA in March 2011 by Polish authorities. It was found in combination with JWH-122 in twenty herbal smoking mixtures such as ‘Red Mercury’, ‘Aztec Thunder’, ‘Zen Ultra’ and ‘Zephyr’.
Synthetic cannabinoid JWH-307
A synthetic cannabinoid that belongs to the naphthoylpyrrole family. It was first reported to the EMCDDA in August 2011 by authorities in Finland. It was detected in a seizure of powder. It has since been detected in several countries in various herbal smoking blends and in combination with other synthetic cannabinoids.
Synthetic cannabinoid JWH-307 bromine derivative
A synthetic cannabinoid that belongs to the naphthoylpyrrole family. It was reported to the EMCDDA in March 2013 by German authorities who detected it in a herbal smoking mixture also containing other (related) synthetic cannabinoids such as JWH-307 and JWH-030.
Synthetic cannabinoid JWH-368
A synthetic cannabinoid that belongs to the naphthoylpyrrole family. It was reported to the EMCDDA by Latvian authorities in February 2013 after it was detected in a bulk quantity of herbal mixture which also contained AM-2201.
Synthetic cannabinoid JWH-370
A synthetic cannabinoid that belongs to the naphthoylpyrrole family. It was first reported to the EMCDDA in February 2012 by Finnish authorities who detected it in a small sample of powder.
AM-6527 5F derivative
A synthetic cannabinoid of the naphthyl indolecarboxamide family. It was first reported to the EMCDDA in November 2013 when it was found in a herbal mixture with AM-6527 and MAM-2201.
AM-1248 azepane isomer
A synthetic cannabinoid belonging to the adamantoylindole family. Reported to hte EMCDDA in September 2013, it is thought to be a by-product formed during the production of AM-1248.
MDMB-CHMICA
An indolecarboxamide that contains a cyclohexylmethyl group. It was first reported to the EMCDDA in September 2014 by the Hungarian focal point when it was detected in a seizure of herbal material. MDMB-CHMICA has been associated with non-fatal intoxications and deaths in Europe. In July 2016, MDMB-CHMICA was risk-assessed by the EMCDDA and subsequently controlled throughout the EU, as of February 2017. The substance has been internationally controlled and will be placed in Schedule II of the of the UN 1971 Convention on Psychotropic Substances.
AB-PINACA
AB-PINACA is an indazolecarboxamide which is structurally related to Apinaca. This compound has also been identified in products sold in Japan. It was first reported to the EMCDDA in May 2013 by Sweden, when it was detected in an herbal mixture seized that also contained 5F-AKB48.
ADB-FUBINACA
ADB-FUBINACA is an indazolecarboxamide. It was first reported to the EMCDDA in November 2013 by the Turkish focal point. It was detected in herbal material seized containing also AB-PINACA and ADBICA. In 2015, tablets containing ADB-FUBINACA were associated with non-fatal intoxications in Hungary.
ADB-PINACA
ADB-PINACA is an an indazolecarboxamide which is structurally related to Apinaca. It was first reported to the EMCDDA in November 2013 by the United Kingdom focal point. ADB-PINACA was associated with an outbreak of non-fatal intoxications in the United States in September 2013.
AB-CHMINACA
AB-CHMINACA is an indazolecarboxamide. It was first reported to the EMCDDA in April 2014 by the Latvian focal point. AB-CHMINACA was detected in a seizure of plastic bags containing herbal material. The EMCDDA is monitoring intensively this substance.
ADB-CHMINACA
ADB-CHMINACA, also known as MAB-CHMINACA, is an indazolecarboxamide. It was first reported to the EMCDDA in September 2014 by the Hungarian focal point when it was detected in a seizure of powder. ADB-CHMINACA was associated with an outbreak of intoxications, including deaths, in the United States in 2015. The EMCDDA is monitoring intensively this substance.
5F-MDMB-PINACA
5F-MDMB-PINACA, also known as 5F-ADB, is an indazolecarboxamide. It was first reported to the EMCDDA in January 2015 by the Hungarian FP when it was detected in a seizure of powder. 5F-MDMB-PINACA has been associated with serious adverse events in Europe. The EMCDDA is monitoring intensively this substance.
MDMB-FUBINACA
MDMB-FUBINACA is an indazolecarboxamide. It was first reported to the EMCDDA in January 2016 by the Hungarian FP when it was detected in a seizure of powder. Products containing MDMB-FUBINACA in the Russian Federation were associated with an outbreak of serious adverse events in 2014.
CUMYL-4CN-BINACA
CUMYL-4CN-BINACA, also known as SGT-78, is an indazolecarboxamide that contains a cumyl group. It was first reported to the EMCDDA in February 2016 by the Hungarian FP when it was detected in a seizure of herbal material. CUMYL-4CN-BINACA has been associated with deaths in Europe. The EMCDDA is monitoring intensively this substance.
MO-CHMINACA
MO-CHMINACA, also known as MO-AMB, is an indazolecarboxamide, which is structurally related to MDMB-CHMICA. It was first reported to the EMCDDA in December 2016 by the Swedish focal point when it was detected in two biological samples.
Sorry…
No additional information on this cannabinoid is currently available. We are in the process of updating our information base and this should be available shortly.
Datos y cifras
- El EMCDDA controla actualmente, a través del Sistema de Alerta Temprana de la UE, más de 620 nuevas sustancias psicoactivas, 169 de las cuales son agonistas de los receptores cannabinoides sintéticos.
- 14 familias químicas de cannabinoides sintéticos han sido identificadas.
- 2008 — se detecta por primera vez un cannabinoide sintético, JWH-018, en un producto «euforizante legal»
Estructura química y denominación de los cannabinoides sintéticos
Muchos de los cannabinoides sintéticos vigilados por el EMCDDA a través del Sistema de Alerta Temprana de la UE poseen nombres en código relacionados con su descubrimiento. En algunos casos derivan de las iniciales del nombre de los científicos que los sintetizaron por primera vez: «JWH» por John W. Huffman y «AM» por Alexandros Makriyannis. En otros casos, los nombres en código proceden de la institución o empresa en la que se sintetizaron originalmente; la serie «HU» de los cannabinoides sintéticos proviene de la Universidad Hebrea de Jerusalén, y la «CP» de Carl Pfizer. En algunos casos los nombres han sido escogido por los fabricantes de productos «euforizantes legales» con la probable intención de facilitar la comercialización de los productos. Ejemplos señalados de ello son «AKB-48» y «2NE1», denominaciones alternativas de APINACA y APICA. «AKB-48» es el nombre de una popular banda femenina de Japón, y «2NE1» es el nombre de una banda de música femenina de Corea del Sur. Por último, el cannabinoide sintético XLR-11 debería su nombre al primer cohete de combustible líquido desarrollado en Estados Unidos para uso en aviones, en probable alusión a la intención del vendedor al comercializar la sustancia.
Actualmente a muchos cannabinoides sintéticos se les asignan códigos derivados de sus largos nombres químicos, como APICA de N-(1-adamantil)-1-pentil-1H-indol-3-carboxamida, y APINACA de N-(1-adamantil)-1-pentil-1H-indazol-3-carboxamida. El EMCDDA ha sistematizado este método, que refleja el modo en que se estructuran los distintos constituyentes de la molécula, con el fin de aplicarlo a las nuevas sustancias emergentes. En la estructura de muchos cannabinoides sintéticos podemos distinguir cuatro componentes: cola, núcleo, sitio de unión y grupo ligado. Al asignar a cada componente un nombre en código es posible identificar la estructura química del cannabinoide sin necesidad de utilizar el nombre químico completo. La sintaxis propuesta para la denominación de los cannabinoides sintéticos según este patrón es la siguiente:
Grupo ligado — Cola Núcleo Sitio de unión
Al ordenar los componentes de este modo se sigue el mismo orden que rige en el nombre químico completo, como es el caso de APICA: N-(1-adamantil)-1-pentil-1H-indol-3-carboxamida. Cuando está presente un sustituyente en la cola (p. ej., 5F), se indica delante del nombre, y los sustituyentes en el grupo ligado se indican antes del grupo ligado; los sustituyentes en el núcleo figuran al final del código.
Si aplicamos el nuevo sistema a un cannabinoide sintético notificado recientemente:

>N-(1-carbamoil-2-metil-propil)-1-[(4-fluorofenil)metil] indazol-3-carboxamida
Nombre actual: AB-FUBINACA Nombre nuevo: MABO-FUBINACA
Los códigos no tienen en cuenta solo las letras, sino también el orden de las letras. Por ejemplo, A identifica la amina presente en el grupo ligado, mientras que CA identifica la carboxamida. Si se respetan la sintaxis y los códigos descritos, los cannabinoides sintéticos que respondan a esta estructura tendrán un nombre abreviado inequívoco.
- EMCDDA (2015), «Synthetic cannabinoids and “Spice” drug profile», página web del EMCDDA.
- EMCDDA y Europol (2013), EU drug markets: A strategic analysis, EMCDDA Joint publications, Oficina de Publicaciones de la Unión Europea, Luxemburgo.
- Gurney, S. M. R., Scott, K. S., Kacinko, S. L., Presley, B. C. y Logan, B. K. (2014), «Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs», Forensic Science Review 26, pp. 53–78.
- EMCDDA (2015), «New psychoactive substances in Europe. An update from the EU Early Warning System (March 2015)», EMCDDA, Lisboa, marzo de 2015.
Find out more
Further reading
- EMCDDA (2015), «Synthetic cannabinoids and “Spice” drug profile», página web del EMCDDA.
- EMCDDA y Europol (2013), EU drug markets: A strategic analysis, EMCDDA Joint publications, Oficina de Publicaciones de la Unión Europea, Luxemburgo.
- Gurney, S. M. R., Scott, K. S., Kacinko, S. L., Presley, B. C. y Logan, B. K. (2014), «Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs», Forensic Science Review 26, pp. 53–78.
- EMCDDA (2015), «New psychoactive substances in Europe. An update from the EU Early Warning System (March 2015)», EMCDDA, Lisboa, marzo de 2015.